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On Local Computation for Optimization in Multi-Agent Systems
Robin Brown1, Federico Rossi2, Kiril Solovey1, Matthew Tsao1, Michael T. Wolf2, and Marco Pavone1

Abstract—A number of prototypical optimization problems
in multi-agent systems (e.g., task allocation and network load-
sharing) exhibit a highly local structure: that is, each agent’s
decision variables are only directly coupled to few other agent’s
variables through the objective function or the constraints.
Nevertheless, existing algorithms for distributed optimization
generally do not exploit the locality structure of the problem,
requiring all agents to compute or exchange the full set of
decision variables. In this paper, we develop a rigorous notion of
“locality” that quantifies the degree to which agents can compute
their portion of the global solution based solely on information
in their local neighborhood. This notion provides a theoretical
basis for a rather simple algorithm in which agents individually
solve a truncated sub-problem of the global problem, where
the size of the sub-problem used depends on the locality of the
problem, and the desired accuracy. Numerical results show that
the proposed theoretical bounds are remarkably tight for well-
conditioned problems.

I. INTRODUCTION

Many problems in multi-agent control are naturally posed
as large-scale optimization problems, where knowledge of the
problem cost function and constraints is distributed among
agents, and the collective actions of the network are sum-
marized by a global decision variable. Concerns about com-
munication overhead, privacy, and robustness in such settings
have motivated the need for distributed solution algorithms
that avoid explicitly gathering all of the problem data in one
location. This is often abstracted as a prominent setting in
the literature on distributed optimization where the objective
function is the sum of privately known functions, and agents
must reach a consensus on the optimal decision variable
despite limited inter-agent communication. We refer the reader
to [1] for a recent survey on distributed optimization.

For many practical settings, seeking consensus as the end
goal accurately represents the objective; for instance, in ren-
dezvous and flocking problems, all the agents’ actions depend
on a global decision variable (meeting time and location for
the former, and speed and heading for the latter). However,
when the global decision variable represents a concatenation of
individual actions, the network can still act optimally without
ever coming to a consensus. Consider, for example, a task
allocation problem where each agent only needs to know what
tasks are assigned to itself, and is not concerned with other
agents’ assignments.
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Many existing distributed optimization algorithms leverage
consensus as a core building block and, broadly speaking, can
be abstracted as the interleaving of descent steps, to drive
the solution to the optimum, and averaging of information
from neighbors, to enforce consistency. The main features
differentiating these algorithms from each other are the cen-
tralized algorithm from which they are derived, and details
regarding the communication structure such as synchronous
or asynchronous, and directed or undirected communication
links, with the broad overarching categories being consensus-
based (sub)gradient ([2], [3]), (sub)gradient push ([4], [5]),
dual-averaging ([6], [7]), and second-order schemes ([8], [9]).

Historically, the mixing time of the communication graph
has been seen as a fundamental limit on the convergence
of distributed optimization algorithms [7]. Accordingly, a
large body of the literature focuses on designing gossip
matrices whose spectral properties allow for faster mixing
of information [10], [11]. This perspective implicitly makes
the assumption that convergence cannot be achieved until
problem information has been disseminated and subsequently
incorporated into the estimates of all of the agents. Our
objective in this paper is to identify problems where this global
mixing is an unnecessary overhead, by quantifying how well
agents can compute their portion of the global solution based
solely on information in their local neighborhood.

Our approach builds on the work of Rebeschini and
Tatikonda [12], who introduced a notion of “correlation”
among variables in network optimization problems. The au-
thors in [12] characterize the “locality” of network-flow
problems, and show that the notion of locality can be applied to
develop computationally-efficient algorithms for “warm-start”
optimization, i.e., re-optimizing after the problem is perturbed.

Our approach in this paper also draws influence from the
field of local computation, a sub-field of theoretical computer
science. Motivated by the common threads in problems such
as locally decodable codes, and decompression algorithms,
Rubinfeld et al. [13] proposed a unifying framework of Local
Computation Algorithms (LCAs). LCAs formalize the intu-
ition that, in problems with large inputs and outputs, if only a
small subset of the output is needed, it is inefficient to compute
the entire output and simply read off the component required.
Instead, both computation and access to the input should be
kept to a minimum such that the required output is obtained
and is consistent with subsequent queries.

Statement of Contribution: We develop a theoretical
basis for the local-computation paradigm applied to convex
optimization problems in multi-agent systems. Specifically,
given the objective of computing x∗i , a single component of the
optimal decision variable, we characterize the error incurred
by truncating the optimization problem to a neighborhood
“around” xi. We show that for all linearly-constrained strongly-
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convex optimization problems, this error decays exponentially
with the size of the neighborhood at a rate dependent on
the conditioning of the problem. This rate, which we coin as
the “locality” of a problem, naturally characterizes the trade-
off between the amount of local knowledge available to an
agents, and the quality of its approximation. The condition
number of a problem, colloquially referred to as a metric of
how “well-behaved” a problem is, unsurprisingly, correlated
with the locality of a problem. Our findings give a theoretical
basis for a rather simple algorithm, in which agents simply
solve truncated sub-problems of the global problem. Our
numerical results, obtained by using this algorithm, show that
the tightness of the theoretical bounds also depend on the
condition number of the problem, with the bounds being near-
optimal for well-conditioned problems.

A preliminary version of this work was accepted at the 2020
European Control Conference [14]. This paper extends prior
results by providing tighter bounds on the locality of problems,
and extending the decay results to all linearly-constrained
strongly-convex optimization problems.

Organization: In Section II, we introduce notation, termi-
nology, and technical assumptions about the problem. In Sec-
tion III, we provide the problem statement, which establishes
the fundamental question of locality, and summarize the main
result, which provides a problem-specific bound on the rate
of locality. We also summarize the key intermediary results,
and discuss the algorithmic implications of locality in terms of
the communication and message complexity it implies. Proof
sketches of the main results are reported in Section IV. In
Section V we provide numerical experiments that highlight
both scenarios where our theoretical bounds are tight, and
those where our bounds are conservative. We conclude and
highlight future directions in Section VI.

II. NOTATION AND ASSUMPTIONS

We let [N] denote the 1−N indices, and ei the canonical
ith basis vector. For a matrix A, Ai j denotes the element in the
ith row and jth column. Similarly, Ai,∗ and A∗, j denote the ith
row and jth column of A respectively. Let AT be the transpose,
and A−1 be the inverse. Given subsets I ⊆M, J ⊆N, let AI,J ∈
R|I|×|J| denotes the submatrix of A obtained by restricting A
to the rows in I and columns in J. Similarly, A−I,−J denotes
the submatrix of A obtained by removing rows I and columns
J. We let σmax(A) and λmax(A) denote the maximum singular
values and eigenvalues of A respectively (σmin(A) and λmin(A)
the minimums), and κ(A) = |λmax(A)|

|λmin(A)|
the condition number.

The difference between sets, S1 \S2 = {s ∈ S1 | s 6∈ S2} is the
set of elements in S1 but not S2.

Throughout this paper, we will consider linearly-constrained
convex optimization problems of the form:

minimize
x ∈ RN

f (x) = ∑
i

fi(xi)

subject to Ax = b.

We assume that A ∈ RM×N is full rank, and that each
function fi : RN → R is L-smooth, µ-strongly convex, and
twice continuously differentiable. We let V (p) = [N] denote the

set of primal variables, V (d) = [M] the set of dual variables, and
S j = {i∈V (p)|A ji 6= 0} the set of primal variables participating
in the jth constraint. For any subset of the primal variable,
S⊆V (p), we also define the following set of constraints

CS := {i ∈ [M] | if j 6∈ S then Ai j = 0}.

Intuitively, CS is the set of constraints that only involve
variables in S. Throughout this paper, we fix the objective
function f and the constraint matrix A, and write x∗(b) as a
function of the constraint vector, b.

We define an undirected graph G = (V,E) by its vertex set
V and edge set E, where elements (i, j) ∈ E are unordered
tuples with i, j ∈ V . We define the graph distance dG(i, j) to
be the length of the shortest path between vertices i and j
in graph G, and N G

k (i) = { j ∈ V | dG(i, j) ≤ k} to be the k-
hop neighborhood around vertex i in graph G for a given k ∈
N>0. We define the following undirected graphs representing
coupling in the optimization problem:

• Gdec = (V (p), Edec(x)), with Edec = {(v(p)
i ,v(p)

j )|Aki 6=
0, Ak j 6= 0 for some k}. Informally, Gdec encodes the de-
cision variables that appear in the same constraint.

• Gcon = (V (d), Econ), with Econ = {(i, j)|[AAT ]i j 6= 0}. In-
formally, Gcon encodes connections between the con-
straints through shared primal variables.

• Gopt = (V (p) ∪ V (d), Eopt(x)), with Eopt =

{(v(p)
j ,v(d)i )|Ai j 6= 0}. Informally, Gopt encodes the

dependence structure of the optimization problem.

III. FOUNDATIONS OF LOCALITY, AND THEIR
ALGORITHMIC IMPLICATIONS

A. Problem Statement

We consider a network of N agents collectively solving the
following linearly-constrained optimization problem

minimize
x ∈ RN

f (x) = ∑
i

fi(xi)

subject to Ax = b,
(1)

where knowledge of the constraints is distributed, and the
decision variable represents a concatenation of the decisions
of individual agents. Specifically, we assume that f j and A∗ j
are initially known by agent j only, and agent j knows bi if
Ai j 6= 0. As a motivating example, consider a scenario where a
fleet of agents needs to collectively complete tasks at various
locations, while minimizing the cost of completing such tasks.
In this setting, the constraints ensure completion of the tasks,
while the entries Ai j of the constraint matrix may encode
the portion of task i that agent j can complete, or efficiency
when completing tasks, thus, constituting private knowledge.
We refer the reader to Section V for additional examples.

As a departure from much of the literature on distributed
optimization, we consider the problem to be solved when each
agent j knows x∗j , i.e, we do not require every agent to know
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the entire decision variable. With some abuse of notation, we
conflate each agent with its associated primal variable1.

Our objective in this paper is to characterize the accuracy
with which an agent i can compute its associated solution xi
component given access to problem data held by agents within
a k-hop neighborhood of itself in Gdec, for a given k ∈ N>0.
On the communication graph given by Gdec, obtaining this
information requires k communication rounds of accumulating
and passing problem data between neighbors. Consequently,
our results also characterize the trade-off between commu-
nication and approximation accuracy in this setting. This
communication graph should not be seen prescriptive, but
rather one that facilitates ready analysis of the implications
of locality with regard to communication.

B. Foundations of Locality

For each xi, we consider sub-problems induced by restrict-
ing Problem (1) to variables within the k-hop neighborhood
around xi and constraints only involving those variables (the
“k-hop local sub-problems”). The main result of this paper
states that the error in the ith component of the k-hop “local
solution” decays exponentially with the size of the neighbor-
hood. A formal statement of this result is provided below.

Theorem III.1 (Locality). Let x(k) be the solution to the
optimization problem induced by restricting Problem 1 to k-
hop neighborhood around xi, N (dec)

k (i), and the constraints

only involving those variables. If λ = supx

√
κ(x)−1√
κ(x)+1

, where

κ(x) denotes the condition number of A∇2 f (x)−1AT , then

|x(k)i − x∗i | ≤Cλ
k (2)

for C = 2
(

1+
√

L
µ

)
σmax(A)
σ2

min(A)

∥∥b−Ax∗UC

∥∥
2.

The rate λ characterizes the degree to which local informa-
tion is sufficient to approximate individual components of the
global optimum, thus justifying it as a metric of “locality”.
The proof of Theorem III.1 relies on two intermediary results.

Remark. The definition of C may appear slightly unusual
because the term σmax(A)

σ2
min(A)

is not scale-invariant i.e., σmax(cA)
σ2

min(cA)
=

σmax(A)
|c|σ2

min(A)
. This is remedied by the fact that any constant rescal-

ing of A and b will rescale
∥∥b−Ax∗UC

∥∥
2 as well. Consequently,

for all c ∈ R,

σmax(A)
σ2

min(A)
‖b−Ax∗UC‖2 =

σmax(cA)
σ2

min(cA)
‖cb− cAx∗UC‖2 .

Our first intermediary result derives the relationship between
solutions to the local sub-problems and the true solution to
Problem (1) (the “global problem”). Specifically, we show
that the solution to a local sub-problem is consistent with

1While, in this paper, each agent is only associated with a scalar variable
for illustrative purposes, one can readily extend the results in this paper to the
setting where each agent is associated with a vector. Additionally, the case
where multiple agents’ actions depend on shared variables can be addressed
by creating local copies of those variables and enforcing consistency between
agents who share that variable through a coupling constraint.

that of a perturbed version of the global problem (where the
perturbation appears in the constraint vector, b).

Theorem III.2 (Relationship between local sub-problems and
the global problem). Let S ⊆ V (p) be a subset of the primal
variables. If x(S) is the solution to the problem obtained by
restricting Problem (1) to the variables in S and constraints
only involving those variables, i.e.,

x(S) = arg min
x(S) ∈ R|S|

∑
i∈S

fi

(
x(S)i

)
,

subject to ACs,Sx(S) = bCs ,

(3)

then there exists b̂ ∈ RM such that x(S) =
[
x∗(b̂)

]
S.

The importance of Theorem III.2 lies in the fact that we
can interpret solving local sub-problems as solving perturbed
versions of the global problem. This interpretation allows us to
leverage theory on the sensitivity of optimal points of Problem
(1) to characterize the error incurred by only using a subset
of the original problem data.

Our second intermediary result characterizes the
component-wise magnitudes of this correction factor.
Specifically, we show that when the constraint vector of
Problem 1 is perturbed, the impact of the perturbation decays
exponentially with distance to the perturbation.

Theorem III.3 (Decay in sensitivity of optimal points). Let λ

be defined as in Theorem III.1. Then for any perturbation in
the constraint vector, ∆ ∈ RM , subset of the primal variables,
S⊆V (p), and C =

2‖∆‖2
σmin(A)

,

‖[x∗(b+∆)− x∗(b)]S‖2 ≤Cλ
d(S,supp(∆)).

Intuitively, this theorem states that a perturbation in the
constraints affects the decision variables “closest” to the
constraint the most, i.e., those that are actually involved in
the constraint, while the effect of the perturbation decays with
the degrees of separation between a decision variable and the
constraint. The construction of the k-hop local sub-problems
takes advantage of this theorem by forcing the “perturbation”
to be at a distance of at least k from component xi. Theorem
III.1 is derived from the intermediary results by bounding the
perturbations induced by cutting constraints.

C. Algorithmic Implications

The characterization of locality naturally suggests a means
of reducing the communication necessary for distributed op-
timization. In a radical departure from much of the existing
work on distributed optimization, which rely on propagating
information throughout the network, we suggest localizing
information flow. Our results show that the importance of
problem data to individual solution components decays with
distance to the data. Consequently, if a problem exhibits
sufficient locality, by restricting information flow to where it
matters most, we can avoid the high communication overhead
of flooding methods with little impact on solution quality.

The objective is for each agent to compute its own compo-
nent of the solution vector, i.e., for agent i to compute x∗i . We
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denote by x̂i agent i’s estimate of x∗i and we let x̂= (x̂1, . . . , x̂N)
be the aggregation of privately known solution components.
Because we allow the approximation to violate constraints,
the typical metric of sub-optimality in the objective function
is uninformative—the approximation generated is guaranteed
to have an objective value no larger than the true optimum.
Consequently, we will measure the accuracy of our solution by
‖x̂− x∗‖∞

—this bound readily translates into bounds on both
the objective value and constraint violation as well.

The locality-aware distributed optimization algorithm is
conceptually simple. Leveraging locality, we conclude that
each agent can compute its component of the solution by
solving a local sub-problem of the global problem, where the
size of the local sub-problem depends on the accuracy desired
and the locality parameter of the global problem. Agents
aggregate local problem data through a recursive flooding
scheme, which is truncated after a predetermined number of
communication rounds. Then, each agent solves its own local
problem without further communication with the network.
Specifically, agent i starts with its local objective function,
fi, its associated column of the constraint matrix A∗i, and
components of the constraint vector bCi . In the initialization
phase, agent i sends ACii to each of its neighbors. After the
initialization phase, agent i has full knowledge of ACi∗, i.e., the
constraints that it participates in. Then, in the first iteration,
agent i sends a representation of ACi∗, bCi and fi to each
of its neighbors. In subsequent iterations, each agent sends
a representation of all of the information it has previously
received to each of its neighbors. After the k’th iteration, for
k ∈ [K], agent i has a representation of f j, bC j and AC j∗ for
all j ∈N (i,k), where N (i,k) denotes the k-hop neighbors of
agent i. After the K communication rounds, agent i generates
its local sub-problem by ignoring any constraints involving
variable outside of its K-hop neighborhood, N (i,K). The
algorithm for agent i is summarized in Algorithm 1.

Algorithm 1: Locality-Aware Distributed Optimization
input: fi, A∗i, bCi , K

1 Initialization: Send ACii to all j ∈N (i,1);
2 for k = 1, . . . ,K do
3 Send { fl , ACl ,∗, bCl}l∈N (i,k−1) to all j ∈N (i,1);
4 end
5 Solve

x(N (i,K)) = arg min
x ∈ R|N (i,K)|

∑
j∈N (i,K)

f j(x j)

s.t. ACN (i,K)
x = bCN (i,K)

(4)

x̂i = x(N (i,K))
i

D. Discussion
It follows directly from the locality analysis in Theo-

rem III.1 that if an accuracy of ‖x̂− x∗‖∞
≤ ε requires

K ≥ 1
1−λ

log
(

C
ε

)
communication rounds. This bound not only determines how
to select the number of communication rounds (passed in

as a hyperparameter), but provides guidance in determining
whether the locality-aware algorithm is suitable for a particular
setting. If K is greater than the radius of the network, at least
one node has accumulated the entirety of the problem data, and
if K is greater than the diameter of the network, every node
accumulates and solves the entire problem—in such settings,
the locality-aware algorithm may not be suitable. Generally,
the locality-aware algorithm offers an advantage in scenarios
where the locality parameter, λ , is sufficiently small, and the
network diameter is much larger than K.

In contrast to algorithms where estimates of the primal
or dual solutions are passed between agents, the message
complexity of the proposed algorithm is not constant across
iterations—the size of the messages grows at each iteration
with the number of agents in each expanding neighborhood.
Explicitly, if each local function can be fully represented
by B bits, a message representing { fi, ACi,∗, bCi} requires
on the order of O(B + 4maxi |Si| ×max j |C j|) bits, where
maxi |Si| is the maximum number of agents participating
in a constraint, and max j |C j| is the maximum number
of constraints any agent participates in. Because |N (i,k−
1)| ≤ (maxi |Si|×max j |C j|)k−1, the maximum message size
during the kth communication round is on the order of
O
(
(maxi |Si|×max j |C j|)k

)
bits.

Notably, both the number of communication rounds and
the message complexity of the locality-aware algorithm do
not directly depend on the number of nodes in the network.
In contrast, distributed optimization algorithms that rely on
passing estimates of the decision variable requires each node
to send messages of size O(N) at every iteration. Moreover,
the number of iterations to convergence of such methods tend
to scale with the number of nodes in the network (depending
on network topology) [1]. While the message complexity of
the locality-aware algorithm grows rapidly between iterations,
when A is sparse, |Si| � N and |Ci| � M. This indicates
that the locality-aware algorithm offers a significant advantage
in settings where |Si| and |Ci| remain bounded as N and M
are increased, i.e., those where a bounded number of agents
participate in constraints, and agents participate in a bounded
number of constraints regardless of the size of the network.

A shortcoming of Algorithm 1 is that problem data is
explicitly shared between agents. At present, its application is
limited to settings where preserving the privacy of individual
objective functions and constraint sets is not a concern. How-
ever, the scalability of the locality-sensitive algorithm in such
settings motivates extending these ideas to design algorithms
that exploit locality without explicitly sharing problem data,
and we highlight as a promising future direction.

IV. PROOFS OF MAIN RESULTS

In this section, we provide proof sketches of the main results
summarized in Section III. First, in Section IV-A, we derive the
relationship between the true solution to Problem (1) (termed
the “global problem”) and the solution to the problem obtained
by restricting Problem (1) to a subset of the variables and the
constraints only involving those variables (termed the “local
sub-problem”). Explicitly, we show that the solution of the
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local sub-problem is consistent with the solution of a perturbed
version of the global problem. This then allows us to leverage
the sensitivity expression in [12] to derive an expression for
the difference between the solution to the local sub-problem
and the solution to the global problem (henceforth denoted as
the “correction factor”).

Second, in Section IV-B, we show that the correction factor
derived in Section IV-A yields a numerical structure that
reflects the underlying structure of the constraints. Specifically,
we show that, while the correction factor will typically be
dense, it is possible to find a sparse approximation to the cor-
rection factor, where the sparsity pattern of the approximation
is a function of the sparsity of the constraints, the desired
accuracy, and the conditioning of the global problem. We
leverage the guarantees of the Conjugate Residual algorithm
to derive, a priori, both the sparsity pattern and a bound on the
accuracy of the approximation. This approach will allow us to
identify which elements of a local solution will be unaffected
if a sparse approximation of the correction factor is used.
Finally, In Section IV-C, we use the results of the previous sub-
sections to characterize the relationship between the quantity
of problem data used, and the error in individual components.
This will naturally give rise to the metric of locality λ , which
we formally present at the end of the section.

A. Relating local sub-problems to the global problem

In this section, we consider sub-problems generated by
restricting Problem (1) to a subset of the primal variables and
the constraints only involving those variables. In particular, if
S⊆V (p) is a subset of the primal variables, we define the local
sub-problem induced by S as:

x(S)(b) = arg min
x(S) ∈ R|S|

∑
i∈S

fi(x
(S)
i )

subject to ACs,Sx(S) = bCs .

(5)

Our objective in this section is to relate the value of x(S) to
[x∗(b)]S, the components S of the global optimum, allowing
us to characterize the error in x(S).

We first show that augmenting the local sub-problem with
the remaining variables does not change the solution to the
local sub-problem. By computing the optimal unconstrained
values for cut variables, we can derive the global constraint
vector b̂ that induces the same value on S, i.e., x(S) =

[
x∗(b̂)

]
S.

This equivalence allows us to exploit the sensitivity of optimal
points of Problem (1) to perturbations in the constraint vector,
b, to derive the correction factor that drives the solution of the
local sub-problem to that of the global problem. This interpre-
tation is key for making the connection between the “warm-
start” scenario presented in [12] (computing x∗(b) given the
solution to x∗(b+ p)) to the “cold-start” scenario considered in
this paper (computing x∗(b) without prior knowledge of other
optimal solutions). This allows us to develop a more general
theory of locality that fully captures the importance of problem
data to individual solution components, as opposed to a theory
that only captures response to perturbations.

In the following lemma, we show that if the local-sub-
problems are augmented with the remaining variables, the
solution on the k-hop neighborhood does not change.

Lemma IV.1 (Augmenting the local sub-problems). Let x(S)

be the solution to the local sub-problem induced by S, and

x̂(S)(b) = arg min
x ∈ RN

N

∑
i=1

fi(xi)

subject to ACs,Sx = bCs .

(6)

is the solution to the problem including the entire objective
function, but only the constraints of the local sub-problem,
then x(S)(b) =

[
x̂(S)(b)

]
S
.

Proof. This lemma follows from observing that the variables
in V (p) \ S are entirely unconstrained, and can be optimized
independently from those in S.

By computing the values that the constraints in V (d) \Cs
take on without being enforced, we can derive a constraint
vector b̂ that induces the same optimal solution as the local
sub-problem (“implicit constraints”).

Lemma IV.2 (Implicit Constraints). Let x̂(S) be defined as in
Lemma IV.1, and b̂ = Ax̂(S). Then,

x̂(S) = arg min
x ∈ RN

f (x)

subject to Ax = b̂.
(7)

Proof sketch. The result follows by showing that the feasible
set of Problem (7) is a subset of the feasible set of Problem
(6).

Lemma IV.2 allows us interpret solving the local sub-
problem as solving a perturbed version of the global problem
where b is replaced by b̂. This interpretation allows us to
leverage the theory developed by Rebeschini and Tatikonda
[12] on the sensitivity of optimal points of Problem (1) to finite
perturbations in the constraint vector, b, to relate the solution
of the local sub-problem to that of the global problem. The
main theorem of [12] is reviewed below.

Theorem IV.3 (Sensitivity of Optimal Points - Theorem 1
of [12]). Let f : RN → R be strongly convex and twice
continuously differentiable, and A∈RM×N have full row rank.
For b ∈ Im(A), let Σ(x∗(b)) := ∇2 f (x∗(b))−1 . Then x∗(b) is
continuously differentiable at all b ∈ Rm, and

dx∗(b)
db

= D(b) = Σ(x∗(b))AT (AΣ(x∗(b))AT )−1. (8)

The above theorem relates the gradient of the optimal
solution, x∗(b), to the constraint matrix and the objective
function. Critically, Equation (8) holds globally, allowing us to
apply the Fundamental Theorem of Calculus to determine the
correction factor necessary to correct for finite perturbations
in the constraint vector. Precisely, if we let ∆ = b− b̂, the
correction factor can be expressed as

x∗(b̂+∆)− x∗(b̂) =
(∫ 1

0
Σ(xθ )AT (AΣ(xθ )AT )−1dθ

)
∆,
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where xθ := x∗(b̂+θ∆). Consequently, the error in the local
solution is precisely this correction factor.

B. Component-wise Sensitivity

In the previous section, we gave a closed-form expression
for the error in the solution of the local sub-problem. In
this section, we show how the underlying structure of the
optimization problem is reflected in the numerical structure of
this error. In particular, we leverage the Conjugate Residuals
algorithm [15] to generate a sequence of sparse approxima-
tions that converge exponentially to the true correction factor
while maintaining sparsity patterns that reflect the underlying
graph structure of the optimization problem. We establish that
a perturbation in the constraints affects the decision variables
“closest” to the constraint the most, while the effect of the
perturbation decays with the degrees of separation between a
decision variable and the constraint. Moreover, we derive an
a priori bound of the rate of decay.

In the remainder of this section, we will analyze the
instantaneous sensitivity of the optimal point

dx∗(b)
db

∆ = D(b)∆ = Σ(x∗(b))AT (AΣ(x∗(b))AT )−1
∆.

In Section IV-C, when we formally define our metric of
locality, the results developed in this section will naturally
extend to finite perturbations in the constraint vector. For ease
of notation, we let Σ = Σ(x∗(b)).

The instantaneous sensitivity expression will allow us to
reason about the structural coupling between components
of Problem (1), however, the term (AΣAT )−1 will require
careful treatment because the inverse of sparse matrices is
typically dense. While the structure of AΣAT is obfuscated
when we take the inverse, it is not lost. The insight that
allows us to recover the original structure of the problem
in the sensitivity expression is that the Conjugate Residuals
algorithm can be leveraged to generate structure-preserving
sparse approximations to δ := (AΣAT )−1∆. We now provide
a cursory overview of the algorithm and relevant guarantees
[15, 6.8]2.

a) Conjugate Residuals: For ease of notation, let M =
AΣAT . Conjugate residuals (CR) is an iterative Krylov method
for generating solutions to linear systems, Mδ = ∆. The
algorithm recursively generates a sequence of iterates

δ
(k) ∈K (M,∆,k) := span{∆, M∆, M2

∆, . . . ,Mk−1
∆}

where each δ (k) minimizes the norm of the residuals, ‖rk‖ :=∥∥∥∆−Mδ (k)
∥∥∥

2
, in the kth Krylov subspace. The guarantees of

the algorithm that we will leverage are as follows.
1) Sparsity:

δ (k) ∈K (M,∆,k) := span{∆, M∆, M2∆, . . . ,Mk−1∆}.
2) Convergence rate:

‖rk‖2 ≤ 2
(√

κ−1√
κ +1

)k

‖r0‖2 = 2
(√

κ−1√
κ +1

)k

‖∆‖2 .

The first guarantee will allow us to derive the support of
each δ (k), which reflects the underlying structure of the global

2We adapt the results from [15] slightly because AΣAT is normal.

problem. The second guarantee will allow us to prove the rate
with which the effect of a perturbation decays with each degree
of separation.

b) Support of the estimates:

Theorem IV.4 (Sparsity Structure of Matrix Powers). For k ∈
Z+, neglecting numerical cancellation3,

supp((AΣAT )k) = {(i, j) | dGcon(vi,v j)≤ k}.

This theorem establishes that the sparsity pattern of a
symmetric matrix to the kth power is determined by the k-hop
neighbors in the graph representing the sparsity pattern of the
original matrix. This allows us the characterize the sparsity
pattern of each of the generating vectors of the kth Krylov
subspace generated by AΣAT and ∆.

Corollary IV.4.1 (Sparsity Structure of the Sensitivity Expres-
sion). For k ∈ Z+ and i ∈ [M]

supp
(

Σ(x)AT
δ
(k)ei

)
⊆N

Gopt
1 (N Gcon

k−1 (i)).

Informally, N
Gopt

1 (N Gcon
k−1 (i)) represents the components

of ΣAT δ (k)ei that can be deduced to be nonzero based on
combinatorial analysis of each of its composing terms. The
consequence of Corollary IV.4.1 is that if we take ΣAT δ (k) as
an approximation to ΣAT (AΣAT )−1∆, we know which compo-
nents of the approximation are guaranteed to be zero, i.e., are
invariant to locally supported perturbations in the constraint
vector. Based on the previous theorem and its corollary, we
define a measure of distance between primal variables and dual
variables that characterizes the indirect path, through coupling
in the constraints, by which a perturbation in the constraint
propagates to primal variables,

d(v(p)
i ,v(d)j ) := min{k | i ∈N

Gopt
1 (N Gcon

k−1 ( j))}.

We also define the distance between sets of primal and dual
variables as

d(I,J) = min{d(v(p)
i ,v(d)j )|v(p)

i ∈ I,v(d)j ∈ J}.

c) Component-wise sensitivity: We will now show that
the previous result along with the convergence guarantees of
CR can be used to infer the component-wise magnitudes of
the sensitivity expression. We will ultimately conclude that
these magnitudes decay exponentially with rate

√
κ−1√
κ+1 with

the degrees of separation between a component of x, and the
support of ∆, where κ is the condition number of AΣAT .

Theorem IV.5 (Decay in Sensitivity). The component-wise
magnitudes of the sensitivity expression can be bounded as

‖[D(b)∆]S‖2 ≤C
(√

κ−1√
κ +1

)d(S,supp(∆))

,

where C =
2‖∆‖2

σmin(A)
, and κ =

λmax(AΣAT )

λmin(AΣAT )
.

3When characterizing the sparsity pattern of a matrix, “numerical cancel-
lation” refers to entries that are zeroed out due to the values of the matrix
entries, and cannot be deduced to be zero from the combinatorial structure of
the matrix alone.



7

Proof sketch. We consider {δ (k)}, the sequence of estimates
of (AΣAT )−1∆ generated via CR, and {ΣAT δ (k)}, the corre-
sponding sparse estimates of the sensitivity expression. The
convergence guarantees of the CR iterates allow us to bound
the error in each ΣAT δ (k), while their sparsity allows us to
deduce the components of ΣAT δ (k) that are zero. The insight
that we leverage is that if

∥∥∥ΣAT
(
(AΣAT )−1∆−δ (k)

)∥∥∥≤ ε and[
ΣAT δ (k)

]
i
= 0, then |

[
ΣAT

(
(AΣAT

)−1
∆

]
i
| ≤ ε

Theorem IV.5 states that components that are “closest” to
the perturbation, i.e., those that participate in the constraints,
are most sensitive to the perturbation, and the sensitivity of
components decay exponentially according to their degree of
separation from the perturbation. Moreover, the decay rate can
be bounded by

√
κ−1√
κ+1 . Theorem IV.5 can be readily extended

to bound the effect that perturbations in the constraint vector,
b, have on individual components of the correction factor.

Corollary IV.5.1 (Decay in Error). If λ ≥
√

κ(x)−1√
κ(x)+1

for all x,

then for C = 2‖∆‖
σmin(A)

,∥∥[x∗(b̂+∆)− x∗(b̂)
]

S

∥∥
2 ≤Cλ

d(S,supp(∆)).

Proof sketch. The proof of this theorem proceeds by plugging
the bound of Theorem IV.5 into Equation (8).

Corollary IV.5.1 extends the results of Theorem IV.5 to
establish that the magnitude of the correction factor decays
with distance to the perturbation. The authors of [12] charac-
terized a similar decay bound for network flow problems, and
demonstrated the potential of such a bound in the context of
warm-start optimization. This decay bound extends their re-
sults to all linearly-constrained convex optimization problems,
and improves on our previous results derived from the infinite
series expansion of the sensitivity expression [14].

C. Putting it all together

We now have the technical machinery necessary to establish
a notion of locality. In this section, we restrict our attention to
local sub-problems induced by a k-hop neighborhood around
xi in Gdec. To lighten notation, we let x(k) denote the solution
to the local sub-problem induced by the k-hop neighborhood

around i (denoted by x

(
N

Gdec
k (i)

)
i in Section IV-A). In this

section, we find constants C and λ such that

|x(k)i − x∗i | ≤Cλ
k.

In other words, we will show that the error in component
i decays exponentially according to rate λ with the size of
neighborhood generating the local sub-problem. The rate λ

naturally characterizes the degree to which local information
is sufficient to compute a single component of the global
optimum, ultimately, becoming our metric of “locality”.

We proceed by leveraging the results of Section IV-A to
characterize the error on each of the local sub-problems in
terms of the implicit constraints, b̂(k). We will then apply the
results derived in Section IV-B to bound the error induced
at component xi. The key difficulty resolved in this section

stems from the fact that we want to avoid solving for the
implicit constraints (which would require using the entirety of
the problem, thus defeating the purpose of locality!)—this is
akin to applying Corollary IV.5.1 without knowing ∆.

While we generally cannot control the value of the implicit
constraints, b̂(k), the construction of the local sub-problems
guarantees that the distance from i to the cut constraints is
at least k, i.e., d(i,supp(∆(k))) ≥ k where ∆(k) := b− b̂(k).
Moreover, we know that the “perturbations”, ∆(k), are not
arbitrary—they arise from ignoring constraints. These insights
provide sufficient knowledge of ∆(k) to apply Corollary IV.5.1.
We are now in a position to prove the main result.

Theorem III.1. Let x(k) be the solution to the optimization
problem induced by restricting Problem 1 to k-hop neighbor-
hood around xi, N (dec)

k (i), and the constraints only involving

those variables. If λ = supx

√
κ(x)−1√
κ(x)+1

, where κ(x) denotes the

condition number of A∇2 f (x)−1AT , then

|x(k)i − x∗i | ≤Cλ
k (9)

for C =
(

1+
√

L
µ

)
2σmax(A)
σ2

min(A)

∥∥b−Ax∗UC

∥∥
2.

Proof sketch. The proof proceeds by first showing that the k-
hop sub-problem construction only removes constraints that
are at distance k away from component xi. We then bound the
additional constraint violations that can be caused by solving
on only a subset of the constraints. For brevity, the proof of
this theorem is deferred to the Appendix

The upshot of this theorem is that if an accuracy of
|x(k)i − x∗i | ≤ ε is desired, a neighborhood size of

K ≥ 1
1−λ

log
(

C
ε

)
is sufficient. The larger λ is, the larger the neighborhood
needed to achieve a desired accuracy, whereas a smaller
λ indicates that a smaller neighborhood is sufficient. We
note here that the actual number of variables and constraints
included in a neighborhood of a fixed size will depend on the
problem. For example, if Gdec is a path graph, then the number
of variables in each neighborhood will scale linearly with k,
whereas if Gdec is a grid graph, then the number of variables
in each neighborhood scales quadratically with k.

The close relationship between λ and the size of sub-
problem needed to achieve a desired accuracy justifies it as
a metric of the degree to which local information is sufficient
to approximate individual components of the global solution.
We are now in a position to define our metric of locality.

Definition IV.1 (Locality). For an optimization problem of the
form (1) we define the locality of the problem as

λ ( f ,A) = sup
x

√
κ(x)−1√
κ(x)+1

. (10)

We also extend the definition of locality to classes of problems.
Explicitly, if it is known that f ∈ F and A ∈A , we define the
locality of the class of problems as

λ (F, A ) = sup
f∈F,A∈A

λ ( f , A). (11)
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For instance, in network flow problems the class of con-
straint matrices, A , are those representing flow conservation
constraints. The flow conservation constraint at a given node
only affects variables for flows departing or arriving at that
node; accordingly, the distance metric d corresponds to the
shortest-path distance in the network flow graph.

D. Discussion

In this section, we have proposed a metric of locality that
captures the amount of information that is required to solve
for a single component of a convex optimization problem
to a given degree of accuracy. From a practical standpoint,
implementing the locality-aware algorithm requires checking
the condition number for a given problem instance. In sce-
narios where the objective function, f , and constraint matrix,
A, are fixed, the locality parameter can be computed once,
offline, and passed in as a parameter to the network. As
an example of such a setting, in Section V we consider an
example of economic dispatch, in which we minimize an
objective function capturing generation and transmission costs
subject to load fulfillment constraints. In such a scenario, the
objective function and constraint matrix are fixed while the
constraint vector is determined online. Since the objective
function and constraint matrix are static, the proposed results
can be immediately applied.

In Definition IV.1, we generalize our metric of locality
to classes of problems to account problem instances that
exhibit variability in the objective and constraint matrix. As an
example, in Section V we consider an instance of the power
network state estimation problem, in which we maximize the
posterior probability of the power flows and voltage angles
given noisy measurements of both, subject to the power flow
equations. The class of problems encompassing this scenario
is defined by objective functions derived from the maximum-
a-posteriori estimation formulation, and the constraint matrix
encoding the power flow equations. The noisy measurements
are modeled in the objective function, so, in contrast with the
economic dispatch example, the objective function is stochas-
tic and determined at run-time. We show that the Hessian of
the objective function is constant for all possible objective
functions of this form. Accordingly, the locality metric can be
readily computed in this setting. However, we remark that this
is not always be the case, and there is often a practical trade-off
between generality of a class of problems and how informative
our metric of locality is. For example, if all but one problem
in a class exhibit a high degree of locality, the proposed metric
would still indicate that the entire class exhibits a low degree of
locality—resulting in bounds that are exceedingly conservative
for almost all of the problems in that class.

In the case that computing the locality of an entire class of
problem is intractable, we suggest a sampling-based approach,
where individual problem instances are sampled, and their
locality estimated. This motivates a complementary notion
of locality in a stochastic sense, where the presented notion
of locality is extended from being a worst-case bound to
one that captures the distribution of locality parameters in a
class of problem. Similarly, we highlight the potential for a

class of adaptive algorithms where agents individually estimate
local measures of locality based on problem data within their
neighborhood (potentially by applying notions of structured
and component-wise condition numbers [16]). This not only
would alleviate the overhead of computing the global locality
parameter, but would remedy the inherent conservatism of
worst-case bounds—as demonstrated in Section V, the maxi-
mum error of Algorithm 1 across agents can be much worse
than the average error.

V. NUMERICAL EXPERIMENTS

In this section, we validate our theoretical bounds against
the true performance of the locality-aware algorithm.

First, we consider an instance of the economic dispatch
problem. We compare the true error of the locality-aware
algorithm with the theoretical upper-bound on the error, as a
function of the number of communication rounds. We observe
that when the condition number is low, the performance of the
algorithm closely matches the theoretical prediction. We also
assess the performance of the projected sub-gradient algorithm
and observe that the number of iterations necessary to achieve
a high level of accuracy far exceeds the number of communi-
cation rounds required for the locally-aware algorithm.

Second, we consider an instance of the rendezvous problem.
Intuitively, deciding on a meeting location that is central to
all agents is an inherently global problem. This is confirmed
by the high locality parameter. Numerically, the rendezvous
problem does not exhibit locality that is overlooked by the
theory. This confirms that our characterization of locality does
not buy us locality when there is none.

A. Economic Dispatch

1) Problem Setting: We consider a setting where generators
are positioned in an N×M grid, and load buses are positioned
in the center of each grid cell. Each load bus is only connected
to its neighboring generators, which need to supply enough
power to satisfy a stochastically generated load L (i). The
costs associated with the problem are a quadratic generation
and transmission costs with coefficients α

2 and β

2 respectively.
Explicitly, the optimization problem representing this setting
is given by

minimize
x

α

2 ∑
i

(
∑

j∈N (i)
xi, j

)2

+
β

2 ∑
i

∑
j∈N (i)

x2
i, j

subject to ∑
i∈N ( j)

xi, j = L j, ∀ j.
(12)

If α = 0, the problem fully decouples and the optimal solution
splits each load evenly between its generators. Consequently,
this setting allows us to use the parameters α and β to “tune”
the locality of the problem and investigate both the tightness
of the proposed bounds for varying rates of locality. We note
that this example also illustrates the extension of our results
to block-separable objectives.
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2) Effect of Locality on Convergence: In this example, we
fixed the dimension of the global problem to be 20×20, and
varied α to be 0.1, 10, and 1000. The condition number
for each of these cases was calculated and found to be
1.39, 37.62, and 3611.43 respectively—these correspond to
locality parameters of 0.08, 0.72, and 0.97. In each of these
cases, we varied the local sub-problem size for each of the
agents between 0 and the diameter of the network. Figure
1 plots the maximum error (computed over all the agents)
against the size of local sub-problem, as well as the error
bound in Theorem III.1 derived from the locality parameter.
For well-conditioned problems, the true performance of the
algorithm aligns closely with the theoretical prediction, while
the theoretical bounds become more conservative as the con-
dition number and the locality parameter increase. Notably, in
cases with low locality parameter, the error clear exponential
convergence. Whereas, when the locality parameter is higher,
the convergence rate of the error appears to increase with the
number of communication rounds. This aligns closely with
the superlinear convergence behavior sometimes observed with
Krylov subspace methods [17].

3) Comparison to other methods: We now evaluate the
performance of our algorithm against the standard distributed
projected subgradient algorithm [2]. The distributed subgradi-
ent algorithm assumes an optimization problem of the form

minimize
x ∈ RN

m

∑
i=1

fi(x)

subject to x ∈ χi

(13)

where each fi(x) and χi are only known by agent i, and
messages are passed over a fixed communication topology.

Each generator’s local objective function encodes its own
transmission and generation costs, i.e.,

fi(x) =
α

2

(
∑

j∈N (i)
xi, j

)2

+
β

2 ∑
j∈N (i)

x2
i, j,

and each generators’ local constraint sets are the load con-
straints it needs to satisfy. We assume a fixed communication
graph where each generator can communicate with other
generators that it shares a constraint with—this is exactly the
communication graph assumed in Algorithm 1. We use the
lazy Metropolis weighting for the consensus step (let L denote
the matrix encoding these weights). Every agent maintains and
updates a copy of the global variable during each iteration.
Let xk

(i) denote the ith agent’s copy of the global optimization
variable at iteration k. Then the projected subgradient updates
are given by

xk+1
(i) = Πχi

(
∑

j
Li jxk

( j)−
γ0

k0.55 gk
(i)

)
,

where Πχi(x) is the orthogonal projection of the point x on
the set χi. We simulated the projected subgradient algorithm
for varying values of α for 10,000 iterations, and extracted
local estimates from each agents’ copy of the global decision
variable. Figure 2 plots the maximum error across all agents
of the projected sub-gradient algorithm against the number of

communication rounds. We observe that within 104 iterations,
none of the estimates have converged to the error achieved
by the initial communication round in the locality-aware algo-
rithm despite each agent having access to all of the problem
data it would have obtained after the initialization round.

We also note that the convergence of the projected subgra-
dient algorithm is sensitive to the step-size schedule, and that
the optimal step size is dependent on the condition number
of the problem. Moreover, the best initial step size is not
consistent across different problem instances. While it is a
weakness that the locality-aware algorithm depends on the
condition number, efficient implementation of the projected
sub-gradient algorithm also depends on the condition number.

B. Rendezvous

We now consider an instance of rendezvous where 1000
agents, placed randomly in a [0,1]2 grid, must decide on a
meeting location the minimizes the sum of their distances
to the location. The optimization problem representing this
setting is given by

minimize
x,y ∈ R

N

∑
i=1

(x− xi)
2 +(y− yi)

2. (14)

We assume that the communication graph, G = (V,E)
between agents is a given by the minimum weight spanning
tree of their distances. We rewrite the rendezvous optimiza-
tion problem in the following form to make it amenable to
distributed optimization algorithms,

minimize
x̂, ŷ ∈ RN

N

∑
i=1

(x̂i− xi)
2 +(ŷi− yi)

2

subject to x̂i = x̂ j, ŷi = ŷ j ∀(i, j) ∈ E

(15)

This formulation creates local copies of the meeting location
coordinates, x and y, and ensures that the neighbors agree
on the same meeting location. Because the communication
graph is connected, this condition ensures that all agents agree
on the same location. As we might expect, deciding on a
meeting location that is central to all agents is an inherently
global problem. This is confirmed by the locality parameter,
which was found to be λ = 0.9939. The true error along
with our theoretical bounds are plotted in Figure 3: unlike the
example of state-estimation in a power network presented in
the appendix, the rendezvous example did not exhibit locality
that was overlooked by the theory.

This experiment shows that our characterization of locality
does not buy us locality when there is none. Some problems
that we might solve with a multi-agent system are inherently
global, requiring information from all of the nodes to solve
with reasonable accuracy. The purpose of this paper is not to
imbue all problems with locality, but rather to develop a metric
that can distinguish between the two.

VI. CONCLUSION

In this paper, we have studied the structure of linearly-
constrained strongly-convex optimization problems, showing
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Fig. 1: This figure plots the true accuracy of the locality-aware algorithm (in blue) against the theoretical accuracy (in red) for
varying communication rounds. In the well-conditioned case, the proposed theoretical rate is tight. As the conditioning of the
problem increases, the theoretical bound becomes more conservative.

Fig. 2: This figure plots the convergence of the projected sub-gradient algorithm against the number of communication rounds
for varying intial step-sizes. The convergence of the algorithm is highly sensitive to the initial step-size.

Fig. 3: This figure shows the true accuracy of the locality-
aware algorithm (blue) against its theoretical accuracy (red).
The locality parameter, λ = 0.9939, indicates that the error
should hardly decay with the number of communication
rounds, which aligns with the empirical results observed.

that all such problems exhibit locality. Our results leverage
Conjugate Residuals to relate the locality of a problem to its
conditioning. The rate of locality derived from CR,

√
κ−1√
κ+1 ,

is a significant improvement to the κ−1
κ+1 rate derived in

previous work via the infinite Neumann expansion. This notion
provided a theoretical basis for a rather simple algorithm in
which agents individually solve a truncated sub-problem of
the global problem. Finally, we demonstrated our algorithm in
the context of both economic dispatch and rendezvous.

While the framework of locality appears to be a promising
direction for improving the scalability of multi-agent systems,
a number of key questions remain open. The first is the issue

of determining the locality parameter of a problem—as stated,
it is defined as a uniform bound on condition number, which
is inherently a global measure. This motivates the question of
how to compute the locality of a problem in a distributed
fashion. The final question is how we can exploit locality
without explicitly sharing problem data between agents.
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[1] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. of the IEEE, vol. 106, no. 5, pp. 953–976, 2018.
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VII. APPENDIX

A. Full Proofs of Section IV

Lemma IV.2 (Implicit Constraints). Let x̂(S) be defined as in
Lemma IV.1, and b̂ = Ax̂(S). Then,

x̂(S) = arg min
x ∈ RN

f (x)

subject to Ax = b̂.
(16)

Proof. Assume by contradiction that there exists an opti-
mal solution x̃∗ 6= x̂(S) to Problem (7) with optimal value
f (x̃∗)< f (x̂(S)). Note that on V (d) \C, the implicit constraints
are equal to the true constraints. Precisely, bCs =

[
b̂
]

Cs
.

The constraints in Problem (6) are a subset of the constraints
in Problem (7). Therefore, the feasible set of Problem (7) is
contained in the feasible set of Problem (6). Explicitly,

{x | Ax = b̂}= {x | A−C,∗x = b̂−C, AC,∗x = b̂C}
⊆ {x | AC,∗x = b̂C}.

Therefore, if x̃∗ is the optimal solution to Problem (7), it is
also a feasible solution for Problem (6). Since f (x̃∗)< f (x̂(S)),
x̂(S) is not optimal for Problem (6)—a contradiction.

Theorem IV.5 (Decay in Sensitivity). The component-wise
magnitudes of the sensitivity expression can be bounded as

‖[D(b)∆]S‖2 ≤C
(√

κ−1√
κ +1

)d(S,supp(∆))

,

where C =
2‖∆‖2

σmin(A)
, and κ =

λmax(AΣAT )

λmin(AΣAT )
.

Proof. Let δ (k) be the kth estimate of (AΣAT )−1∆ generated
via the Conjugate Residuals algorithm. Corollary IV.4.1 allows
us to conclude that [ΣAT δ (k)]S = 0 if k≤ d(S,supp(∆)). It then
follows that for all k ≤ d(S,supp(∆))

[D(b)∆]S = [D(b)∆−ΣAT
δ
(k)]S

= [ΣAT ((AΣAT )−1
∆−δ

(k))]S.

Taking the norm of both sides of the equality, we can bound
the sensitivity as

‖[D(b)∆]S‖2 ≤
∥∥∥ΣAT ((AΣAT )−1

∆−δ
(k))
∥∥∥

2
.

Notice that the kth residual can be expressed as

rk = A
(

ΣAT
(
(AΣAT )−1

∆−δ
(k)
))

,

and convergence of the conjugate residuals algorithms guar-
antees that

‖rk‖2 ≤ 2
(√

κ−1√
κ +1

)k

‖r0‖2 .

Consequently, using the fact that σmin(A)‖v‖ ≤ ‖Av‖, we can
bound

‖[D(b)∆]S‖2 ≤
∥∥∥ΣAT ((AΣAT )−1

∆−δ
(k))
∥∥∥

2

≤ ‖rk‖2
σmin(A)

≤ 2‖∆‖2
σmin(A)

(√
κ−1√
κ +1

)k

.

Taking C =
2‖∆‖2

σmin(A)
and k = d(S,supp(∆)) concludes the proof.

Corollary IV.5.1 (Decay in Error). If λ ≥
√

κ(x)−1√
κ(x)+1

for all x,

then for C = 2‖∆‖
σmin(A)

,∥∥[x∗(b̂+∆)− x∗(b̂)
]

S

∥∥≤Cλ
d(S,supp(∆)).

Proof. Like before, we define xθ := x∗(b̂+ θ∆), and bθ :=
b̂+θ∆. Then,∥∥[x∗(b̂+∆)− x∗(b̂)

]
S

∥∥
=

∥∥∥∥[∫ 1

0
Σ(xθ )AT (AΣ(xθ )AT )−1

∆dθ

]
S

∥∥∥∥
=

∥∥∥∥∫ 1

0
[D(b)∆]Sdθ

∥∥∥∥≤ ∫ 1

0
‖[D(b)∆]S‖dθ

≤
∫ 1

0

∥∥∥Σ(xθ )AT ((AΣ(xθ AT )−1
∆−δ

(k))
∥∥∥dθ

≤
∫ 1

0

2‖∆‖
σmin(A)

(√
κ(xθ )−1√
κ(xθ )+1

)k

dθ ≤ 2‖∆‖
σmin(A)

λ
k.

Taking C = 2‖∆‖
σmin(A)

completes the proof.

Theorem III.1 (Locality). Let x(k) be the solution to the
optimization problem induced by restricting Problem 1 to k-
hop neighborhood around xi, N (dec)

k (i), and the constraints

only involving those variables. If λ = supx

√
κ(x)−1√
κ(x)+1

, where

κ(x) denotes the condition number of A∇2 f (x)−1AT , then

|x(k)i − x∗i | ≤Cλ
k (17)
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for C =
(

1+
√

L
µ

)
2σmax(A)
σ2

min(A)

∥∥b−Ax∗UC

∥∥
2.

Proof. First, we will show that the k-hop local sub-problem
can be generated by cutting constrains that are at least distance
k from i under the primal-dual distance metric. We will prove
this by reasoning about the supports of the appropriate matrix
products. The set of primal variables contained in the k-hop
neighborhood of xi can be equivalently characterized as

N
(p)

k (i) =
{

j |
[
(AT A)k

]
i j
6= 0
}
= supp([(AT A)k]i∗).

Similarly, the primal-dual distance metric can be defined as

d(i,c) = min{k | c ∈ supp
([

AT (AAT )k−1
]

i∗

)
}

= min{k | c ∈ supp
([

(AT A)k−1AT
]

i∗

)
}.

Because the graph Gdec is defined by placing an edge between
agents that appear together in the same constraint, if Ac,i 6= 0
and Ac, j 6= 0 for some constraint c, then for all l ∈V (d),

|d(i, l)−d( j, l)| ≤ 1.

Moreover, to generate the k-hop local sub-problem, a con-
straint only cut if it contains a variable of distance at least
k + 1. Consequently, all of the primal variables in the cut
constraint are at least distance k from i. We can now apply
Corollary IV.5.1 to bound the error in component i as

|x(k)i − x∗i | ≤
2
∥∥∥∆(k)

∥∥∥
σmin(A)

λ
k.

We will bound the ∆(k) term by deriving the maximum
constraint violation error,

∥∥∥b− b̂(k)
∥∥∥

∞

. We do so by noting
that the solution to the local sub-problems are consistent with
the solution to

x̂N (i,k) = arg min
x ∈ RN

f (x)

subject to ACN (i,K)
x = bCN (i,K)

.

(18)

That is, we use the same set of constraints as agent i’s k-
hop local sub-problem but include all of the variables in the
objective function. Precisely,

x(N (i,k)) =
[
x̂N (i,k)

]
N (i,K)

.

Consequently, only variables in N (i,k) are constrained. We
define

x∗UC = arg min
x ∈ RN

f (x) (19)

to be the solution to the unconstrained problem. Then[
x̂N (i,K)

]
i
=

{
x(N (i,k))

i , if i ∈N (i,k)[
x∗UC

]
i , if i 6∈N (i,k).

The individual components of the implicit constraints can be
derived as[

b̂(k)
]

i
=

{
bi, if i ∈CN (i,k)[
Ax(N (i,k))

]
i
, if i 6∈CN (i,k).

It then follows that the component-wise constraint violation is
given by[

b− b̂(k)
]

i
=

{
0, if i ∈CN (i,K)[
b−Ax̂(N (i,K))

]
i
, if i 6∈CN (i,K)

Consequently, the maximum constraint violation is equal to∥∥∥[b−Ax̂(N (i,K))
∥∥∥

∞

.

To obtain a uniform bound, we will show that∥∥∥b−Ax̂(N (i,K))
∥∥∥

2
≤

(
1+

√
L
µ

)
σmax(A)
σmin(A)

‖b−Ax∗UC‖2

Because f is L-smooth and µ-strongly convex,

µ

2
‖x− xUC‖2

2 ≤ f (x)− f (xUC)≤
L
2
‖x− xUC‖2

2

Moreover, because f (x̂)≤ f (x),

µ

2
‖x̂− xUC‖2

2 ≤
L
2
‖x− xUC‖2

2 .

Then, using the triangle inequality,

‖x− x̂‖2 ≤ ‖x− xUC‖2 +‖xUC− x̂‖2

≤

(
1+

√
L
µ

)
‖x− xUC‖2

Finally, because σmin(A)‖v‖ ≤ ‖Av‖ ≤ σmax(A)‖v‖ and b =
Ax,

‖b−Ax̂‖2 ≤

(
1+

√
L
µ

)
σmax(A)
σmin(A)

‖b−Ax∗UC‖2 .

B. Additional Experiments

1) Power Network—State Estimation: In this section, we
consider a state-estimation problem on the Pan European Grid
Advanced Simulation and State Estimation (PEGASE) 9241-
bus power-network [18], [19]. From a theoretical standpoint,
this problem exhibits a high locality rate, which suggests
that a locality-aware algorithm will not be useful in this
case. However, empirically we observe that the locally-aware
algorithm still manages to find a high-quality solution in
fairly few rounds, indicating that our bounds can be overly
conservative.

We model the power network by a graph G(V,E). We
assume that the network is primarily inductive, the voltage
amplitudes are fixed to one, and the voltage angle differences
between neighboring nodes are small enough to apply the DC
power assumption. Then, the power flow Pi j on edge (i, j)∈ E
satisfies

Pi j =−bi j(θi−θ j).

We consider a setting where both the voltage angles, θ , and
line power flows, P, are measured according to

θ
m
i = θi + εi, Pm

i j = Pi j + εi j
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where εi ∼N (0,σ2
i ), and εi j ∼N (0,σ2

i j), and the true power
flow and voltage angles are estimated. Then, the maximum a
posteriori estimation problem is given by

minimize
θ̂ ∈ R|V |, P̂ ∈ R|E|

∑
i∈V

(
θ̂i−θ m

i
σi

)2

+ ∑
(i, j)∈E

(
P̂i j−Pm

i j

σi j

)2

subject to
[

I B
][ P̂

θ̂

]
= 0

(20)
where I is the identity matrix, and B is the network admit-
tance matrix containing the electrical parameters and topology
information [20]. We simulated the locality-aware distributed
optimization algorithm (Algorithm 1) for K = 2, . . . ,20. The
average and maximum errors in both the powerflow and
voltage angle estimates are shown in Figure 4 along with
their theoretical bounds. We found that the condition number
of the problem was 6.37×106, resulting in a locality rate of
0.9992. The theoretical bounds, in this case, would suggest that
the locality-aware approach is not well-suited to the problem
setting. However, numerically, we observe that this bound
is overly conservative and the problem instance nevertheless
exhibits locality behavior. Additionally, we see that the average
error tends to be an order of magnitude less than the maximum
error exhibited. Our method of analysis resulted in a uniform
worst-case bound, however, this experiment demonstrates that
the worst case is a poor representation of the average case.
Accordingly, we highlight extending the results of this paper
to quantify local measures of locality.

Fig. 4: This figure depicts the local sub-problem size versus
average (green), maximum (blue), and theoretical (red) errors
in power flow and voltage angle estimates. The theoretical
bounds suggest a rate of decay of 0.9992. However, both
the maximum and average errors decay much faster, with the
average error being consistently an order of magnitude smaller
than the theoretical error.


